本发明提供了一种基于生成网络的行人重识别数据生成和扩充方法,步骤为:利用视频预测网络生成新的行人视频帧样本。利用深度生成对抗网络进行端到端的行人背景变换数据生成。利用不同的数据生成方法进行行人数据集的广度和丰富性的扩充。将扩充的数据集送入特征提取网络中提取特征并用欧氏距离评估性能。本方法同时考虑了行人的类内和类间数据扩充,联合利用了不同的生成网络生成更多更丰富的样本,扩充的数据集具有很好的多样性和鲁棒性,能更好的解决与适应由于样本数量不足和背景干扰带来的性能损失,具有普遍的适用性,扩充的数据集在下一步的行人识别中能发挥更好的性能及效率。
本发明提供了一种基于生成网络的行人重识别数据生成和扩充方法,步骤为:利用视频预测网络生成新的行人视频帧样本。利用深度生成对抗网络进行端到端的行人背景变换数据生成。利用不同的数据生成方法进行行人数据集的广度和丰富性的扩充。将扩充的数据集送入特征提取网络中提取特征并用欧氏距离评估性能。本方法同时考虑了行人的类内和类间数据扩充,联合利用了不同的生成网络生成更多更丰富的样本,扩充的数据集具有很好的多样性和鲁棒性,能更好的解决与适应由于样本数量不足和背景干扰带来的性能损失,具有普遍的适用性,扩充的数据集在下一步的行人识别中能发挥更好的性能及效率。
商品类型 | 专利 | 申请号 | CN201710857752.3 | IPC分类号 | |
专利类型 | 发明 | 法律状态 | 有权 | 技术领域 | |
交易方式 | 技术转让 | 专利状态 | 已授权 | 专利权人 | |